2015年四川中考数学考前必做专题试题—等腰三角形
来源 :中华考试网 2015-03-09
中7.(2014•浙江金华,第8题4分)如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B的度数是【 】
A.70° B.65° C.60° D.55°
【答案】B.
【解析】
8. (2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )
(第1题图)
A. 3 B. 4 C. 5 D. 6
考点: 含30度角的直角三角形;等腰三角形的性质
分析: 过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.
解答: 解:过P作PD⊥OB,交OB于点D,
在Rt△OPD中,cos60°= = ,OP=12,
∴OD=6,
∵PM=PN,PD⊥MN,MN=2,
∴MD=ND= MN=1,
∴OM=OD﹣MD=6﹣1=5.
故选C.
点评: 此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.
9.(2014•四川绵阳,第11题3分)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为( )
A. B. C. D.
考点: 勾股定理;三角形的面积;三角形三边关系;等腰三角形的性质.
分析: 设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,再根据题意列出关于x、n、y的方程组,用n表示出x、y的值,由三角形的三边关系舍去不符合条件的x、y的值,由n是正整数求出△ABC面积的最小值即可.
解答: 解:设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,得
或 ,
解得 或 ,
∵2× < (此时不能构成三角形,舍去)
∴取 ,其中n是3的倍数
∴三角形的面积S△= × × = n2,对于S△= n2= n2,
当n≥0时,S△随着n的增大而增大,故当n=3时,S△= 取最小.
故选:C.
点评: 本题考查的是三角形的面积及三角形的三边关系,根据题意列出关于x、n、y的方程组是解答此题的关键.
10.(2014•无锡,第10题3分)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )
A. 6条 B. 7条 C. 8条 D. 9条
考点: 作图—应用与设计作图;等腰三角形的判定
分析: 利用等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.
解答: 解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.
故选:B.
点评: 此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.
11. (2014•湖北宜昌,第10题3分)如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=( )
A. 30 B. 45 C. 60 D. 90
考点: 等腰三角形的性质.
分析: 根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.
解答: 解:∵AB=AC,∠A=30°,
∴∠ABC=∠ACB= (180°﹣∠A)= (180°﹣30°)=75°,
∵以B为圆心,BC的长为半径圆弧,交AC于点D,
∴BC=BD,
∴∠CBD=180°﹣2∠ACB=180°﹣2×75°=30°,
∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°.
故选B.
点评: 本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.
12.(2014•湖北宜昌,第11题3分)要使分式 有意义,则的取值范围是( )
A. x≠1 B. x>1 C. x<1 D. x≠﹣1
考点: 分式有意义的条件.
分析: 根据分母不等于0列式计算即可得解.
解答: 解:由题意得,x﹣1≠0,
解得x≠1.
故选A.
点评: 本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.