中考

导航

2020年中考数学复习:圆的练习之切线的判定

来源 :中华考试网 2019-09-10

  2020年中考数学复习:圆的练习之切线的判定

  如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:

  (1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.

  其中正确的个数为()

  A.4个B.3个C.2个D.1个

  分析:(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;

  (2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;

  (3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;

  (4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.

  解:(1)连接CO,DO,

  ∵PC与⊙O相切,切点为C,∴∠PCO=90°,

  在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,

  ∴PD与⊙O相切,故此选项正确;

  (2)由(1)得:∠CPB=∠BPD,

  在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),

  ∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;

  (3)连接AC,

  ∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,

  在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),

  ∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,

  ∴CO=PO=AB,∴PO=AB,故此选项正确;

  (4)∵四边形PCBD是菱形,∠CPO=30°,

  ∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.

分享到

您可能感兴趣的文章