2015年四川中考数学考前必做专题试题—锐角三角函数
来源 :中华考试网 2015-03-06
中一、选择题
1. (2014•四川巴中,第8题3分)在Rt△ABC中,∠C=90°,sinA=1/2 ,则tanB的值为( )
A. 1B.3 C.1/2 D.2
考点:锐角三角函数.
分析:根据题意作出直角△ABC,然后根据sinA= ,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.
解答:∵sinA= ,∴设BC=5x,AB=13x,则AC= =12x,
故tan∠B= = .故选D.
点评: 本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.
2. (2014•山东威海,第8题3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是( )
A.1 B. 1/2C. 3/5D.2/3
考点: 锐角三角函数的定义;三角形的面积;勾股定理
分析: 作AC⊥OB于点C,利用勾股定理求得AC和AB的长,根据正弦的定义即可求解.
解答: 解:作AC⊥OB于点C.
则AC= ,
AB= = =2 ,
则sin∠AOB= = = .
故选D.
点评: 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
3.(2014•四川凉山州,第10题,4分)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是( )
A. 45° B. 60° C. 75° D. 105°
考点: 特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理
分析: 根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
解答: 解:由题意,得 cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.
故选:C.
点评: 此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.
4.(2014•甘肃兰州,第5题4分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )
A.1/2 B.3/5 C. 2D.1/5
考点: 锐角三角函数的定义;勾股定理.
分析: 首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.
解答: 解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB= .
∴cosA= ,
故选:D.
点评: 本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.
5.(2014•广州,第3题3分)如图1,在边长为1的小正方形组成的网格中, 的三个顶点均在格点上,则 ( ).
(A) (B) (C) (D)
【考点】正切的定义.
【分析】 .
【答案】 D
6.(2014•浙江金华,第6题4分)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为 ,则t的值是【 】
A.1 B.1.5 C.2 D.3
【答案】C.
【解析】
7.(2014•滨州,第11题3分)在Rt△ACB中,∠C=90°,AB=10,sinA= ,cosA= ,tanA= ,则BC的长为( )
A. 6 B. 7.5 C. 8 D. 12.5
考点: 解直角三角形
分析: 根据三角函数的定义来解决,由sinA= = ,得到BC= = .
解答: 解:∵∠C=90°AB=10,
∴sinA= ,
∴BC=AB× =10× =6.
故选A.
点评: 本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA= ,cosA= ,tanA= .