中考

导航

《初中数学》竞赛辅导20

来源 :中华考试网 2015-09-23

  几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具.

  1. 角函数的计算和证明问题

  在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握:

  (1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论.

  注意到sin45°=cos45°= ,由(1)可知,当时0sina;当45°

  (2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出).

  例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA= 成立,那么角A是( )

  (A)锐角 (B)钝角 (C)直角

  分析 对A分类,结合sinA和cosA的单调性用枚举法讨论.

  解当A=90°时,sinA和cosA=1;

  当45° ,cosA>0,

  ∴sinA+cosA> 当A=45°时,sinA+cosA= 当00,cosA> ∴sinA+cosA> ∵ 1, 都大于 .

  ∴淘汰(A)、(C),选(B).

  例2(1982年上海初中数学竞赛题)ctg67°30′的值是( )

  (A) -1 (B)2- (C) -1

  (D) (E) 分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.

  解 如图36-1,作等腰Rt△ABC,设∠B=90°,AB=BC=1.延长BA到D使AD=AC,连DC,则AD=AC= ,∠D=22.5°,∠DCB=67.5°.这时,

  ctg67°30′=ctg∠DCB= ∴选(A).

分享到

您可能感兴趣的文章