高考

导航

2017年高考数学提分专项练习(四)

来源 :中华考试网 2016-12-27

二、填空题

7.如图,四边形ABCD为菱形,四边形CEFB为正方形,平面ABCD平面CEFB,CE=1,AED=30°,则异面直线BC与AE所成角的大小为________.

答案:45° 解题思路:因为BCAD,所以EAD就是异面直线BC与AE所成的角.

因为平面ABCD平面CEFB,且ECCB,

所以EC平面ABCD.

在RtECD中,EC=1,CD=1,故ED==.

在AED中,AED=30°,AD=1,由正弦定理可得=,即sin EAD===.

又因为EAD∈(0°,90°),所以EAD=45°.

故异面直线BC与AE所成的角为45°.

8.给出命题:

异面直线是指空间中既不平行又不相交的直线;

两异面直线a,b,如果a平行于平面α,那么b不平行于平面α;

两异面直线a,b,如果a平面α,那么b不垂直于平面α;

两异面直线在同一平面内的射影不可能是两条平行直线.

上述命题中,真命题的序号是________.

答案: 解题思路:本题考查了空间几何体中的点、线、面之间的关系.根据异面直线的定义知:异面直线是指空间中既不平行又不相交的直线,故命题为真命题;两条异面直线可以平行于同一个平面,故命题为假命题;若bα,则ab,即a,b共面,这与a,b为异面直线矛盾,故命题为真命题;两条异面直线在同一个平面内的射影可以是:两条平行直线、两条相交直线、一点一直线,故命题为假命题.

9.如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥.已知一个正六棱锥的各个顶点都在半径为3的球面上,则该正六棱锥的体积的最大值为________.

答案:16 命题立意:本题以球的内接组合体问题引出,综合考查了棱锥体积公式、利用导数工具处理函数最值的方法,同时也有效地考查了考生的运算求解能力和数学建模能力.

解题思路:设球心到底面的距离为x,则底面边长为,高为x+3,正六棱锥的体积V=×(9-x2)×6(x+3)=(-x3-3x2+9x+27),其中0≤x<3,则V′=(-3x2-6x+9)=0,令x2+2x-3=0,解得x=1或x=-3(舍),故Vmax=V(1)=(-1-3+9+27)=16.

10.已知三棱锥P-ABC的各顶点均在一个半径为R的球面上,球心O在AB上,PO平面ABC,=,则三棱锥与球的体积之比为________.

答案: 命题立意:本题主要考查线面垂直、三棱锥与球的体积计算方法,意在考查考生的空间想象能力与基本运算能力.

解题思路:依题意,AB=2R,又=,ACB=90°,因此AC=R,BC=R,三棱锥P-ABC的体积VP-ABC=PO·SABC=×R××R×R=R3.而球的体积V球=R3,因此VP-ABCV球=R3R3=.

三、解答题

11.

如图,四边形ABCD与A′ABB′都是正方形,点E是A′A的中点,A′A平面ABCD.

(1)求证:A′C平面BDE;

(2)求证:平面A′AC平面BDE.

解题探究:第一问通过三角形的中位线证明出线线平行,从而证明出线面平行;第二问由A′A与平面ABCD垂直得到线线垂直,再由线线垂直证明出BD与平面A′AC垂直,从而得到平面与平面垂直.

解析:(1)设AC交BD于M,连接ME.

四边形ABCD是正方形,

M为AC的中点.

又 E为A′A的中点,

ME为A′AC的中位线,

ME∥A′C.

又 ME⊂平面BDE,

A′C⊄平面BDE,

A′C∥平面BDE.

(2)∵ 四边形ABCD为正方形, BD⊥AC.

∵ A′A⊥平面ABCD,BD平面ABCD,

A′A⊥BD.

又AC∩A′A=A, BD⊥平面A′AC.

BD⊂平面BDE,

平面A′AC平面BDE.

12.

如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,ADDC,ABDC.

(1)求证:D1CAC1;

(2)设E是DC上一点,试确定E的位置,使D1E平面A1BD,并说明理由.

命题立意:本题主要考查空间几何体中的平行与垂直的判定,考查考生的空间想象能力和推理论证能力.通过已知条件中的线线垂直关系和线面垂直的判定证明线面垂直,从而证明线线的垂直关系.并通过线段的长度关系,借助题目中线段的中点和三角形的中位线寻找出线线平行,证明出线面的平行关系.解决本题的关键是学会作图、转化、构造.

解析:(1)在直四棱柱ABCD-A1B1C1D1中,连接C1D, DC=DD1,

四边形DCC1D1是正方形,

DC1⊥D1C.

又ADDC,ADDD1,DC∩DD1=D,

AD⊥平面DCC1D1,

又D1C平面DCC1D1,

AD⊥D1C.

∵ AD⊂平面ADC1,DC1平面ADC1,

且AD∩DC1=D,

D1C⊥平面ADC1,

又AC1平面ADC1,

D1C⊥AC1.

(1)题图

(2)题图

(2)连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN.

平面AD1E∩平面A1BD=MN,

要使D1E平面A1BD,

可使MND1E,又M是AD1的中点,

则N是AE的中点.

又易知ABN≌△EDN,

AB=DE.

即E是DC的中点.

综上所述,当E是DC的中点时,可使D1E平面A1BD.

分享到

您可能感兴趣的文章