执业医师

导航

2017公卫执业医师生物化学考点解读:第五章

来源 :中华考试网 2017-05-26

  第五章 糖 代 谢

  新陈代谢(物质代谢)是指生物与周围环境进行物质和能量交换的过程。包括同化作用和异化作用。特点:1、温和条件下由酶催化完成;2、反应协调而有顺序性;3、反应分步进行并伴有能量变化,有中间产物。

  糖代谢是生物体广泛存在的最基本代谢 。糖代谢为生物提供重要的碳源和能源。生物所需的能量,主要由糖代谢提供。糖代谢包括糖的分解代谢和合成代谢,分解代谢包括糖的有氧氧化分解(糖酵解、丙酮酸氧化脱羧、三羧酸循环)和磷酸戊糖途径;合成代谢包括糖异生和光合作用。

  注:代谢章节的特点是易懂难记,但对于任何一种代谢过程无非学习以下几个方面知识:1、每步中间反应的反应物和产物是什么;2、催化的酶是什么;3、物质和能量变化情况;4、代谢如何进行调节;(5、生物学意义)。

  一、糖酵解

  糖酵解(EMP途径):葡萄糖经过一系列中间反应后生成丙酮酸的过程。糖酵解在细胞质中进行。

  1、过程:

  1)、 葡萄糖磷酸化形成G-6-P;此反应不可逆,催化此反应的激酶有,已糖激酶和葡萄糖激酶。

  激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。

  2)、 G-6-P异构化为F-6-P;此反应可逆,反应方向由底物与产物的含量水平控制。由磷酸葡萄糖异构酶催化,将葡萄糖的羰基C由C1移至C2 ,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。

  3)、 F-6-P磷酸化,生成F-1.6-P;此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶

  4)、 F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP);该反应可逆,由醛缩酶催化。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。

  5)、 磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛;由磷酸丙糖异构酶催化。已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P

  6)、 3-磷酸甘油醛氧化成1.3—二磷酸甘油酸;由磷酸甘油醛脱氢酶催化。此反应可逆,既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。碘乙酸可与酶的-SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)。

  7)、 1.3—二磷酸甘油酸转化成3—磷酸甘油酸和ATP;此反应可逆,由磷酸甘油酸激酶催化。这是酵解过程中的第一次底物水平磷酸化反应,也是酵解过程中第一次产生ATP的反应。一分子Glc产生二分子三碳糖,共产生2ATP。这样可抵消Glc在两次磷酸化时消耗的2ATP。

  8)、 3—磷酸甘油酸转化成2—磷酸甘油酸;此反应可逆,磷酸甘油酸变位酶催化,磷酰基从C3移至C2。

  9)、 2—磷酸甘油酸脱水生成磷酸烯醇式丙酮酸;此反应可逆,烯醇化酶催化。2—磷酸甘油酸中磷脂键是一个低能键(△G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇键是高能键(△G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。

  10)、 磷酸烯醇式丙酮酸生成ATP和丙酮酸;此反应不可逆,调节位点。由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸

  EMP总反应式:

  1葡萄糖+2Pi+2ADP+2NAD+ → 2丙酮酸+2ATP+2NADH+2H++2H2O

  2、 糖酵解的能量变化

  无氧情况下:净产生2ATP(2分子NADH将2分子丙酮酸还原成乳酸)。

  有氧条件下:NADH可通过呼吸链间接地被氧化,生成更多的ATP。

  1分子NADH→3ATP(或2.5ATP)

  1分子FADH2 →2ATP(或1.5 ATP)

  因此,净产生8ATP(酵解2ATP,2分子NADH进入呼吸氧化,共生成6ATP)。

  但在肌肉系统组织和神经系统组织:一个Glc酵解,净产生6ATP(2+2*2)。

  ★甘油磷酸穿梭:

  2分子NADH进入线粒体,经甘油磷酸穿梭系统,胞质中磷酸二羟丙酮被还原成3—磷酸甘油,进入线粒体重新氧化成磷酸二羟丙酮,但在线粒体中的3—磷酸甘油脱氢酶的辅基是FAD,因此只产生4分子ATP。

  ①:胞液中磷酸甘油脱氢酶。

  ②:线粒体磷酸甘油脱氢酶。

  ★苹果酸穿梭机制:

  胞液中的NADH可经苹果酸脱氢酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸—2—酮戊二酸载休转运,进入线粒体内,由线粒体内的苹果酸脱氢酶催化,生成NADH和草酰乙酸。

  而草酰乙酸经天冬氨酸转氨酶作用,消耗Glu而形成Asp。Asp经线粒体上的载体转运回胞液。在胞液中,Asp经胞液中的Asp转氨酶作用,再产生草酰乙酸。

  经苹果酸穿梭,胞液中NADH进入呼吸链氧化,产生3个ATP。

  糖酵解过程中包含两个底物水平磷酸化:一为1,3-二磷酸甘油酸转变为3-磷酸甘油酸;二为磷酸烯醇式丙酮酸转变为丙酮酸。

  2、调节

  1)6-磷酸果糖激酶-1

  变构抑制剂:ATP、柠檬酸

  变构激活剂:AMP、ADP、1,6-双磷酸果糖(产物反馈激,比较少见)和2,6-双磷酸果糖(最强的激活剂)。

  2)丙酮酸激酶

  变构抑制剂:ATP 、肝内的丙氨酸

  变构激活剂:1,6-双磷酸果糖

  3)葡萄糖激酶

  变构抑制剂:长链脂酰辅酶A

  注:此项无需死记硬背,理解基础上记忆是很容易的,如知道糖酵解是产生能量的,那么有ATP等能量形式存在,则可抑制该反应,以利节能,上述的柠檬酸经三羧酸循环也是可以产生能量的,因此也起抑制作用;产物一般来说是反馈抑制的;但也有特殊,如上述的1,6-双磷酸果糖。特殊的需要记忆,只属少数。以下类同。关于共价修饰的调节,只需记住几个特殊的即可,下面章节提及。

  3、丙酮酸的去路

  1) 进入三羧酸循环

  2) 乳酸的生成

  在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3—磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。

  总反应: Glc + 2ADP + 2Pi → 2乳酸 + 2ATP + 2H2O

  3) 乙醇的生成

  酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇脱氢酶催化下,乙醛被NADH还原成乙醇。

  总反应:Glc+2pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H20

  在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。

  4) 丙酮酸进行糖异生

  4、 其它单糖进入糖酵解途径:除葡萄糖外,其它单糖也可进行酵解,通过形成糖酵解的某一中间产物。各种单糖进入糖酵解的途径,如糖原降解产物G—1—P异构成G—6—P。

  5、糖酵解的生理意义

  1)葡萄糖分解代谢的共同途径;

  2)对于厌氧生物、缺氧或某些病理的组织来说,是糖分解和获得能量的主要方式;

  3)糖酵解形成的很多中间产物,可作为合成其他物质的原料,与其他代谢途径联系起来。

  6、乳酸循环:葡萄糖在肌肉组织中经糖的无氧酵解产生的乳酸,可经血循环转运至肝脏,再经糖的异生作用生成自由葡萄糖后转运至肌肉组织加以利用,这一循环过程就称为乳酸循环(Cori循环)。Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。

  乳酸循环是由于肝内糖异生活跃,又有葡萄糖-6-磷酸酶可水解6-磷酸葡萄糖,释出葡萄糖。肌肉除糖异生活性低外,又没有葡萄糖-6-磷酸酶。

  乳酸循环生理意义:避免损失乳酸以及防止因乳酸堆积引起酸中毒。

  二、糖有氧氧化

  葡萄糖的有氧氧化包括四个阶段。

  ①糖酵解产生丙酮酸(2丙酮酸、 2ATP、2NADH)

  ②丙酮酸氧化脱羧生成乙酰CoA 2×(CO2、NADH)

  ③三羧酸循环 2×(2CO2、ATP、3NADH、FADH2)

  ④呼吸链氧化磷酸化 (NADH-----ATP)

  三羧酸循环:乙酰CoA经一系列的氧化、脱羧,最终生成CO2、H2O、并释放能量的过程,又称柠檬酸循环、Krebs循环。

  原核生物:①~④阶段在胞质中

  真核生物:①在胞质中,②~④在线粒体中

  1、丙酮酸脱羧生成乙酰CoA。此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TCA的中心环节。

  1) 丙酮酸脱氢酶系:丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。

  E.coli丙酮酸脱氢酶复合体:

  分子量:4.5×106,直径45nm,比核糖体稍大。

  酶 辅酶 每个复合物亚基数

  丙酮酸脱羧酶(E1) TPP 24

  二氢硫辛酸转乙酰酶(E2) 硫辛酸 24

  二氢硫辛酸脱氢酶(E3) FAD、NAD+ 12

  此外,还需要CoA、Mg2+作为辅因子。这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。

  2) 反应步骤:

  (1)丙酮酸脱羧形成羟乙基-TPP

  (2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基

  (3)E2将乙酰基转给CoA,生成乙酰-CoA

  (4)E3氧化E2上的还原型二氢硫辛酸

  (5)E3还原NAD+生成NADH

  3) 丙酮酸脱氢酶系的活性调节:从丙酮酸到乙酰CoA是代谢途径的分支点,此反应体系受到严密的调节控制,此酶系受两种机制调节。

  (1)可逆磷酸化的共价调节:

  丙酮酸脱氢酶激酶(EA)(可被ATP激活)

  丙酮酸脱氢酶磷酸酶(EB)

  磷酸化的丙酮酸脱氢酶(无活性)

  去磷酸化的丙酮酸脱氢酶(有活性)

  (2)别构调节:ATP、CoA、NADH是别构抑制剂。ATP抑制E1;CoA抑制E2;NADH抑制E3。

  4) 能量变化:1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH(3ATP)。

  2、 三羧酸循环(TCA)的过程

  TCA循环:每轮循环有2个C原子以乙酰CoA形式进入,有2个C原子完全氧化成CO2放出,分别发生4次氧化脱氢,共释放12ATP。

  1) 反应步骤

  (1)、 乙酰CoA+草酰乙酸→柠檬酸

  柠檬酸合酶,TCA中第一个调节酶:受ATP、NADH、琥珀酰CoA、和长链脂肪酰CoA的抑制;受乙酰CoA、草酸乙酸激活。氟乙酰CoA可与草酰乙酸生成氟柠檬酸,抑制下一步反应的酶,据此,可以合成杀虫剂、灭鼠药。

  (2)、 柠檬酸→异柠檬酸

  由顺鸟头酸酶催化

  (3)、 异柠檬酸氧化脱羧生成α-酮戊二酸和NADH

  异柠檬酸脱氢酶,这是三羧酸循环中第一次氧化脱羧反应, TCA中第二个调节酶:Mg2+(Mn2+ )、NAD+和ADP可活化此酶,NADH和ATP可抑制此酶活性。细胞在高能状态:ATP/ADP、NADH/NAD+比值高时,酶活性被抑制。线粒体内有二种异柠檬酸脱氢酶,一种以NAD+为电子受体,另一种以NADP+为受体。前者只在线粒体中,后者在线粒体和胞质中都有。

  (4)、 α-酮戊二酸氧化脱羧生成琥珀酰CoA和NADH

  α-酮戊二酸脱氢酶系,TCA循环中的第三个调节酶:受NADH、琥珀酰CoA、Ca2+、ATP、GTP抑制,α-酮戊二酸脱氢酶系为多酶复合体,与丙酮酸脱氢酶系相似(先脱羧,后脱氢)

  (5)、 琥珀酰CoA生成琥珀酸和GTP

  琥珀酰CoA合成酶(琥珀酸硫激酶),这是TCA中唯一的底物水平磷酸化反应,直接生成GTP。在高等植物和细菌中,硫酯键水解释放出的自由能,可直接合成ATP。在哺乳动物中,先合成GTP,然后在核苷二磷酸激酶的作用下,GTP转化成ATP。

  (6)、 琥珀酸脱氢生成延胡索酸(反丁烯二酸)和FADH

  琥珀酸脱氢酶是TCA循环中唯一嵌入线粒体内膜的酶。丙二酸是琥珀酸脱氢酶的竞争性抑制剂,可阻断三羧酸循环。

  (7)、 延胡索酸水化生成L-苹果酸

  延胡索酸酶具有立体异构特性,OH只加入延胡索酸双键的一侧,因此只形成L-型苹果酸。

  (8)、 L-苹果酸脱氢生成草酰乙酸和NADH

  L-苹果酸脱氢酶,平衡有利于逆反应,但生理条件下,反应产物草酰乙酸不断合成柠檬酸,其在细胞中浓度极低,少于10-6mol/L,使反应向右进行。

  2) TCA循环小结

  (1)、总反应式:

  丙酮酸 + 4NAD+ + FAD + GDP → 4NADH + FADH2 + GTP + 3CO2 + H2O

  乙酰CoA + 3NAD+ + FAD + GDP → 3NADH + FADH2 + GTP + 2CO2 + H2O

  (2)、 一次底物水平的磷酸化、二次脱羧反应,三个调节位点,四次脱氢反应。

  3个NADH、1个FADH2进入呼吸链

  (3)、 三羧酸循环中碳骨架的不对称反应

  同位素标记表明,乙酰CoA上的两个C原子在第一轮TCA上并没有被氧化。

  被标记的羰基碳在第二轮TCA中脱去。在第三轮TCA中,两次脱羧,可除去最初甲基碳的50%,以后每循环一次,脱去余下甲基碳的50%

  3) 一分子Glc彻底氧化产生的ATP数量(按NADH的P/O=3,FADH2的为2来计算)

  (在肝脏中)

  反应 酶 ATP消耗 产生ATP方式 ATP数量 合计

  糖 酵 解 已糖激酶 1 -1 8

  磷酸果糖激酶 1 -1

  磷酸甘油醛脱氢酶 NADH呼吸链氧化磷酸化 2×3

  磷酸甘油酸激酶 底物水平磷酸化 2×1

  丙酮酸激酶 底物水平磷酸化 2×1

  TCA 丙酮酸脱氢酶复合物 NADH 2×3 30

  异柠檬酸脱氢酶 NADH 2×3

  α-酮戊二酸脱氢酶复合物 NADH 2×3

  琥珀酸脱氢酶 FADH2 2×2

  苹果酸脱氢酶 NADH 2×3

  琥珀酰CoA合成酶 底物水平磷酸化 2×1

  净产生:38ATP

  在骨骼肌、脑细胞中,净产生:36ATP

  甘油磷酸穿梭,1个NADH生成2个ATP

  苹果酸穿梭,1个NADH生成3个ATP

  (1)、 磷酸甘油穿梭机制:

  磷酸二羟丙酮+NADH+H+→3-磷酸甘油+NAD+

  3-磷酸甘油进入线粒体,将2H交给FAD而生成FADH2,FADH2可传递给辅酶Q,进入呼吸链,产生2ATP(3-磷酸甘油脱氢酶的辅酶是FAD)。

  (2)、 苹果酸穿梭机制:

  胞液中NADH可经苹果酸酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸-α-酮戊二酸载体转运,进入线粒体,由线粒体内苹果酸脱氢酶催化,生成NADH和草酰乙酸,NADH进入呼吸链氧化,生成3ATP。(苹果酸脱氢酶的辅酶是NAD+)

  1分子Glc在肝、心中完全氧化,产生38ATP,在骨骼肌、神经系统组织中,产生36ATP。

  4) 三羧酸循环的代谢调节

  (1)、 柠檬酸合酶(限速酶):受ATP、NADH、琥珀酰CoA及脂酰CoA抑制。

  受乙酰CoA、草酰乙酸激活

  (2)、 异柠檬酸脱氢酶:NADH、ATP可抑制此酶,ADP可活化此酶,当缺乏ADP时就失去活性。

  (3)、 α-酮戊二酸脱氢酶:受NADH和琥珀酰CoA抑制。

分享到

您可能感兴趣的文章