2016公卫执业医师考试《生物化学》冲刺讲义:第四章第二节
来源 :中华考试网 2016-07-06
中第二节 酶作用的分子基础
一、酶的化学组成
按照酶的化学组成可将酶分为单纯酶和结合酶两大类。单纯酶分子中只有氨基酸残基组成的肽链,结合酶分子中则除了多肽链组成的蛋白质,还有非蛋白成分,如金属离子、铁卟啉或含B族维生素的小分子有机物。结合酶的蛋白质部分称为酶蛋白(apoenzyme),非蛋白质部分统称为辅助因子 (cofactor),两者一起组成全酶(holoenzyme);只有全酶才有催化活性,如果两者分开则酶活力消失。
非蛋白质部分如铁卟啉或含B族维生素的化合物若与酶蛋白以共价键相连的称为辅基(prosthetic group),用透析或超滤等方法不能使它们与酶蛋白分开;反之两者以非共价键相连的称为辅酶(coenzyme),可用上述方法把两者分开。
结合酶中的金属离子有多方面功能,它们可能是酶活性中心的组成成分;有的可能在稳定酶分子的构象上起作用;有的可能作为桥梁使酶与底物相连接。辅酶与辅基在催化反应中作为氢(H+和e)或某些化学基团的载体,起传递氢或化学基团的作用。体内酶的种类很多,但酶的辅助因子种类并不多,几种酶均用某种相同的金属离子作为辅助因子的例子,同样的情况亦见于辅酶与辅基,如3-磷酸甘油醛脱氢酶和乳酸脱氢酶均以NAD+作为辅酶。酶催化反应的特异性决定于酶蛋白部分,而辅酶与辅基的作用是参与具体的反应过程中氢(H+和e)及一些特殊化学基团的运载。
二、酶的活性中心
酶属生物大分子,分子质量至少在1万以上,大的可达百万。酶的催化作用有赖于酶分子的一级结构及空间结构的完整。若酶分子变性或亚基解聚均可导致酶活性丧失。一个值得注意的问题是酶所催化的反应物即底物(substrate),却大多为小分物质它们的分子质量比酶要小几个数量级。
酶的活性中心(active center)只是酶分子中的很小部分,酶蛋白的大部分氨基酸残基并不与底物接触。组成酶活性中心的氨基酸残基的侧链存在不同的功能基团,如-NH2、-COOH、-SH、-OH和咪唑基等,它们来自酶分子多肽链的不同部位。有的基团在与底物结合时起结合基团(binding group)的作用,有的在催化反应中起催化基团(catalytic group)的作用。
但有的基团既在结合中起作用,又在催化中起作用,所以常将活性部位的功能基团统称为必需基团(essential group)。它们通过多肽链的盘曲折叠,组成一个在酶分子表面、具有三维空间结构的孔穴或裂隙,以容纳进入的底物与之结合并催化底物转变为产物,这个区域即称为酶的活性中心。
而酶活性中心以外的功能集团则在形成并维持酶的空间构象上也是必需的,故称为活性中心以外的必需基团。对需要辅助因子的酶来说,辅助因子也是活性中心的组成部分。酶催化反应的特异性实际上决定于酶活性中心的结合基团、催化基团及其空间结构。
三、酶的分子结构与催化活性的关系
酶的分子结构的基础是其氨基酸的序列,它决定着酶的空间结构和活性中心的形成以及酶催化的专一性。如哺乳动物中的磷酸甘油醛脱氢酶的氨基酸残基序列几乎完全相同,说明相同的一级结构是酶催化同一反应的基础。又如消化道的糜蛋白酶,胰蛋白酶和弹性蛋白酶都能水解食物蛋白质的肽键,但三者水解的肽键有各自的特异性,糜蛋白酶水解含芳香族氨基酸残基提供羧基的肽键,胰蛋白酶水解赖氨酸等碱性氨基酸残基提供羧基的肽键,而弹性蛋白酶水解侧链较小且不带电荷氨基酸残基提供羧基的肽键。
这三种酶的氨基酸序列分析显示40%左右的氨基酸序列相同,都以丝氨酸残基作为酶的活性中心基团,三种酶在丝氨酸残基周围都有G1y-Asp-Ser-Gly-Pro序列,X线衍射研究提示这三种酶有相似的空间结构,这是它们都能水解肽键的基础。而它们水解肽键时的特异性则来自酶的底物结合部位上氨基酸组成上有徽小的差别所致。
这三个酶的底物结合部位均有一个袋形结构,糜蛋白酶该处能容纳芳香基或非极性基;胰蛋白酶袋子底部稍有不同其中一个氨基酸残基为天冬氨酸取代,使该处负电荷增强,故该处对带正电荷的赖氨酸或精酸残基结合有利;弹性蛋白酶口袋二侧为缬氨酸和苏氨酸残基所取代,因此该处只能结合较小侧链和不带电荷的基团.说明酶的催化特异性与酶分子结构的紧密关系。
四、酶原与酶原激活(zymogen andactivation of zymogen)
有些酶如消化系统中的各种蛋白酶以无活性的前体形式合成和分泌,然后,输送到特定的部位,当体内需要时,经特异性蛋白水解酶的作用转变为有活性的酶而发挥作用。这些不具催化活性的酶的前体称为酶原(zymogen)。如胃蛋白酶原(pepsinogen)、胰蛋白酶原(trypsinogen)和胰凝乳蛋白酶原(chymotrypsinogen)等。某种物质作用于酶原使之转变成有活性的酶的过程称为酶原的激活。使无活性的酶原转变为有活性的酶的物质称为活化素。活化素对于酶原的激活作用具有一定的特异性。
例如胰腺细胞合成的糜蛋白酶原为245个氨基酸残基组成的单一肽链,分子内部有5对二硫键相连,该酶原的激活过程.首先由胰蛋白酶水解15位精氨酸和16位异亮氨酸残基间的肽键,激活成有完全催化活性的p-糜蛋白酶,但此时酶分子尚未稳定,经p-糜蛋白酶自身催化,去除二分子二肽成为有催化活性井具稳定结构的α糜蛋白酶。
在正常情况下,血浆中大多数凝血因子基本上是以无活性的酶原形式存在,只有当组织或血管内膜受损后,无活性的酶原才能转变为有活性的酶,从而触发一系列的级联式酶促反应,最终导致可溶性的纤维蛋白原转变为稳定的纤维蛋白多聚体,网罗血小板等形成血凝块。
酶原激活的本质是切断酶原分子中特异肽键或去除部分肽段后有利于酶活性中心的形成酶原激活有重要的生理意义,一方面它保证合成酶的细胞本身不受蛋白酶的消化破坏,另一方面使它们在特定的生理条件和规定的部位受到激活并发挥其生理作用。
如组织或血管内膜受损后激活凝血因子;胃主细胞分泌的胃蛋白酶原和胰腺细胞分泌的糜蛋白酶原、胰蛋白酶原、弹性蛋白酶原等分别在胃和小肠激活成相应的活性酶,促进食物蛋白质的消化就是明显的例证。特定肽键的断裂所导致的酶原激活在生物体内广泛存在,是生物体的一种重要的调控酶活性的方式。如果酶原的激活过程发生异常,将导致一系列疾病的发生。出血性胰腺炎的发生就是由于蛋白酶原在未进小肠时就被激活,激活的蛋白酶水解自身的胰腺细胞,导致胰腺出血、肿胀。