2016中学教师资格证考试《高中数学学科知识》模拟试题(二)
来源 :考试网 2016-07-26
中2016中学教师资格证考试《高中数学学科知识与能力》模拟试题及答案(二)
四、论述题
15.【参考答案】高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。(1)获得必要的数学基础知识和基本技能。理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法。以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。(2)提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。(3)提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。(4)发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。(5)提高学习数学的兴趣,树立学好数学的信心。形成锲而不舍的钻研精神和科学态度。(6)具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
五、案例分析题
16.【参考答案】
(1)解法一所体现的算法是:
S1假设没有小兔.则小鸡应为n只;
S2计算总腿数为2n只;
S3计算实际总腿数m与假设总腿数2n的差值m-2n;
S4计算小兔只数为(m-2n)÷2;
S5小鸡的只数为n-(m-2n)÷2;
解法二所体现的算法是:
S1设未知数
S2根据题意列方程组;
S3解方程组:
S4还原实际问题,得到实际问题的答案。
(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。
六、教学设计题
17.【参考答案】(1)关于弧度制的教材分析:选自普通高中课程标准实验教科书A版必修4第一章第l节第3课时。一方面初中已经学过角的度量单位“度”,并且上节课学习了任意角的概念,因此本节课是在学习任意角的基础上的再次延伸,为后面学习任意角的三角函数做准备,有承上启下的作用;另一方面角度制是60进制,与实数间的运算不同,在解决很多问题时带来不便,所以学习弧度制是很有必要的。
通过本节的学习,掌握另一种度量角的单位制——弧度制,理解并认识到角度制和弧度制都是对角度量的方法.角的概念推广以后,在弧度制下,角的集合与实数集之间建立一一对应关系,为下一节学习三角函数做好准备。
(2)知识与技能:理解并掌握弧度制的定义;掌握角度中度与弧度的互化;理解角的集合与实数之间建立的一一对应关系:掌握并运用弧度制表示的弧长公式、扇形面积公式。
过程与方法:创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义。根据弧度制的定义推导并运用弧长公式和扇形公式,以具体的实例学习角度制与弧度制的互化。
情感态度与价值观:激发对数学强烈的求知欲,养成积极主动地学习和思考并参与数学学习活动的好习惯。
教学重点:掌握角度中度与弧度的互化。
教学难点:掌握弧度制表示的弧长公式、扇形面积公式的应用。(3)在课堂教学中,可采用如下设计的教学过程。
一、创设故事情境
一个生病的小男孩得知自己的体温是“102”时,十分忧伤地独自一个人躺在床上“等死”。而他的爸爸对此却一无所知,他以为儿子是想休息,所以才没有陪伴他,等他从外面打猎回来,发现儿子不见好转时,才发现儿子没有吃药。一问才知道,他儿子在学校里听同学说一个人的体温是“44”度时就不能活。当爸爸告诉他就像英里和千米一样,有两种不同的体温测量标准,一种37度是正常,而另一种98度是正常时,他才一下子放松下来,委屈的泪水哗哗地流下来。在生活、生产和科学研究中,一个量可以有几种不同的计量单位(老师可以让学生说出如长度、面积、质量等一些量的不同计量单位),并指出对于“角”仅用“度”做单位就很不方便。因此,我们要学习角的另一种计量单位——弧度。如此引入,很自然引出或鼓励学生猜测“角”还有没有其他度量方式,从而开启思维的闸门。
二、探索角新的度量方法
可从两种度量实质上的一致之处开始探索:拿两个量角器拼成一个圆,可以看出圆周被分成360份,其中每一份所对的圆心角的度数就是l度,然后提出问题“拿”圆上不同的圆弧,度量圆周时,得到的数值是否一样?为了探索这个问题。把学生分成若干小组,思考下列问题:
①1度的角是如何规定的?
②用一个圆心角所对的弧长来度量一个圆心角的大小是否可行?同一个圆心角在半径不等的圆中所对弧长相等吗?
③用一个圆的半径来度量该圆一个圆心角的大小是否可行?其值会不会由于圆半径的变化而变化?
④如何定义圆心角的大小?说明这种度量的好处。
要求学生分组讨论以上问题,写出结果,在班内交流结果,师生共同确定答案。
这样处理可将弧度概念与度量有机结合起来,有效化解难点,在探索中又注重课堂交流能力的培养,使学生在不断的交流中逐渐明晰自己的思路。
教师资格证培训招生:中学学科+综合素质+教学知识与能力(精讲班+习题班+VIP题库) 查看试题答案,请扫描二维码,立即获得本题库手机版 |