Transgenic plants and animals result from genetic engineering experiments
来源 :焚题库 2022-07-01
中问答题Transgenic plants and animals result from genetic engineering experiments in which genetic material is moved from one organism to another, so that the latter will exhibit a characteristic. Business corporations, scientists, and farmers hope that transgenic techniques will allow more cost-effective and precise plants and animals with desirable characteristics that are not available using up to date breeding technology.
Transgenic techniques allow genetic material to be transferred between completely unrelated organisms.
In order for a transgenic technique to work, the genetic engineer must first construct a transgene, which is the gene to be introduced plus a control sequence. When making a transgene, scientists usually substitute the original promoter sequence with one that will be active in the correct tissues of the recipient plant or animal.
The creation of transgenic animals is one of the most dramatic advances derived from recombinant DNA technology. A transgenic animal results from insertion of a foreign gene into an embryo. The foreign gene becomes a permanent part of the host animals’ genetic material. As the embryo develops, the foreign gene may be present in many cells of the body, including the germ cells of the testis or the ovary. If the transgenic animal is fertile, the inserted foreign gene (transgene) will be inherited by future progeny. Thus, a transgenic animal, once created, can persist into future generations. Transgenic animals are different from animals in which foreign cells or foreign organs have been engrafted. The progeny of engrafted animals do not inherit the experimental change. The progeny of transgenic animals do.
The techniques for creating a transgenic animal include the following: 1) picking a foreign gene, 2) placing the foreign gene in a suitable form called a “construct” which guides the insertion of the foreign gene into the animal genome and encourages its expression, and 3) injecting the construct into a single fertilized egg or at the very early embryo stage of the host animal. Much genetic engineering goes into the choice of a foreign gene and building a construct. The construct must have promoters to turn on foreign gene expression at its new site within the host animal genome. By choosing a particular promoter and splicing it in front of the foreign gene, we can encourage expression of our transgene within a specific tissue.
One of the most important applications of transgenic animals is the development of new animal models of human disease. Transgenic animals can serve as models for many malignant tumors. Mice have been the most frequent hosts for transgenic modification, other domestic animals have also been used. One idea has been to create transgenic cows which secrete important pharmaceutical substances in their milk. Other attempts are being made to express human interferon in the milk of sheep.
A transgenic crop plant contains a gene or genes which have been artificially inserted instead of the plant acquiring them through pollination. The inserted gene sequence (known as the transgene) may come from another unrelated plant, or from a completely different species: transgenic BT corn, for example, which produces its own insecticide, containing a gene from a bacterium. Plants containing transgenes are often called genetically modified or GM crops although in reality all crops have been genetically modified from their original wild state by domestication, selection and controlled breeding over long periods of time.
Transgenic techniques allow genetic material to be transferred between completely unrelated organisms.
In order for a transgenic technique to work, the genetic engineer must first construct a transgene, which is the gene to be introduced plus a control sequence. When making a transgene, scientists usually substitute the original promoter sequence with one that will be active in the correct tissues of the recipient plant or animal.
The creation of transgenic animals is one of the most dramatic advances derived from recombinant DNA technology. A transgenic animal results from insertion of a foreign gene into an embryo. The foreign gene becomes a permanent part of the host animals’ genetic material. As the embryo develops, the foreign gene may be present in many cells of the body, including the germ cells of the testis or the ovary. If the transgenic animal is fertile, the inserted foreign gene (transgene) will be inherited by future progeny. Thus, a transgenic animal, once created, can persist into future generations. Transgenic animals are different from animals in which foreign cells or foreign organs have been engrafted. The progeny of engrafted animals do not inherit the experimental change. The progeny of transgenic animals do.
The techniques for creating a transgenic animal include the following: 1) picking a foreign gene, 2) placing the foreign gene in a suitable form called a “construct” which guides the insertion of the foreign gene into the animal genome and encourages its expression, and 3) injecting the construct into a single fertilized egg or at the very early embryo stage of the host animal. Much genetic engineering goes into the choice of a foreign gene and building a construct. The construct must have promoters to turn on foreign gene expression at its new site within the host animal genome. By choosing a particular promoter and splicing it in front of the foreign gene, we can encourage expression of our transgene within a specific tissue.
One of the most important applications of transgenic animals is the development of new animal models of human disease. Transgenic animals can serve as models for many malignant tumors. Mice have been the most frequent hosts for transgenic modification, other domestic animals have also been used. One idea has been to create transgenic cows which secrete important pharmaceutical substances in their milk. Other attempts are being made to express human interferon in the milk of sheep.
A transgenic crop plant contains a gene or genes which have been artificially inserted instead of the plant acquiring them through pollination. The inserted gene sequence (known as the transgene) may come from another unrelated plant, or from a completely different species: transgenic BT corn, for example, which produces its own insecticide, containing a gene from a bacterium. Plants containing transgenes are often called genetically modified or GM crops although in reality all crops have been genetically modified from their original wild state by domestication, selection and controlled breeding over long periods of time.
参考答案:
答案解析:
涉及考点
2022翻译二级笔译实务考试大纲
第一章 英译汉
13、科普科技类