2017年福建教师招聘考试中学数学考试大纲
来源 :中华考试网 2017-04-28
中2017年福建省中小学新任教师公开招聘考试
中学数学学科考试大纲
一、考试性质
福建省中小学新任教师公开招聘考试是符合招聘条件的考生参加的全省统一的选拔性考试。考试结果将作为福建省中小学新任教师公开招聘面试的依据。招聘考试从教师应有的专业素质和教育教学能力等方面进行全面考核,择优录取,具有较高的信度、效度,必要的区分度和适当的难度。
二、考试目标与要求
1.着重考查考生的数学专业基础知识、中学数学课程与教学论知识掌握情况,考查运用基本理论、知识与方法分析和解决有关中学数学教学问题的能力;是否具备从事中学数学教育、教学工作所必需的基本教学技能和持续发展自身专业素养的基本能力。
2.数学专业基础知识的要求分为了解、理解、掌握三个层次。
⑴了解:要求对所列知识的含义及其背景有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中识别它。
⑵理解:要求对所列知识内容有较深刻的认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。
⑶掌握:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。
3.基本能力包括思维能力、运算能力、空间想象能力、实践能力、创新能力。
⑴思维能力:能对问题或资料进行观察、比较、分析、综合、抽象与概括;能用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。
⑵运算能力:能根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。
⑶空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析图形元素及其相互关系;能对图形进行分解、组合与变换;能运用图形与图表等手段形象地揭示问题的本质。
⑷实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能运用相关的数学方法解决问题并加以验证;能运用数学语言正确地表述和说明。
⑸创新能力:能选择有效的教学方法和手段,对教学信息、情境进行分析;能综合运用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出中学数学教学中的新问题,找到解决问题的途径、方法和手段,创造性地解决教学问题。
三、考试范围与要求
(一)数学专业基础知识
1.集合与常用逻辑用语
考试内容:
集合。命题。常用逻辑用语。
考试要求:
(1)了解子集、交集、并集、补集有关术语和符号表示。理解集合之间的运算法则,会求集合的交、并、补运算。
(2)了解命题、充要条件等概念的意义;掌握四种命题之间的关系,以及充分、必要、充要条件的判断。
(3)了解逻辑联结词“或”、“且”、“非”的含义, 理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定。
2.函数
考试内容:
映射。函数的概念及其表示。函数的有界性、单调性、奇偶性、周期性。基本初等函数及其图像。有理数指数幂的运算性质。对数的运算性质。三角函数的概念。同角三角函数的基本关系式。三角函数的诱导公式。两角和与差、二倍角的正弦、余弦、正切公式。初等函数。
考试要求:
(1)了解映射的概念。掌握函数的基本性质(定义域、值域、有界性、单调性、奇偶性、周期性)。了解函数的零点与方程根的联系。理解基本初等函数的图形与性质之间的关系,掌握基本初等函数的性质以及应用。
(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质。理解对数的概念,掌握对数的运算性质。
(3)了解角、弧度制、任意角的三角函数、三角函数线等概念。掌握同角三角函数的基本关系式、诱导公式,掌握两角和与差、二倍角的正弦、余弦、正切公式,掌握二倍角等三角公式的内在联系以及公式在求值、化简、证明中的应用。掌握正弦函数、余弦函数、正切函数的图像、性质以及图像之间的变换规律,掌握正弦定理、余弦定理在解斜三角形中的应用。
(4)了解初等函数的概念。能够运用初等函数的性质解决某些简单的实际问题。
3.不等式、数列与极限
考试内容:
不等式。不等式的性质。不等式的证明。不等式的解法。含绝对值不等式。基本不等式。数列的概念。等差数列与等比数列。数列的前n项和。极限的概念。极限的运算。
考试要求:
(1)掌握不等式的基本性质,会用分析法、综合法、比较法证明简单不等式,掌握简单不等式的解法,理解含绝对值不等式及其解法。能利用基本不等式解决实际问题。
(2)了解方程与不等式的同解原理。掌握一元代数方程(特殊类型)的解法,掌握初等超越方程的解法。
(3)理解算术平均与几何平均不等式、贝努利不等式、柯西不等式以及应用。掌握凸函数定理与排序定理在证明不等式中的应用。
(4)掌握等差数列、等比数列的概念、通项公式以及前n项和公式的推导以及应用。
(5)掌握线性递归数列的概念以及通项公式的求法。
(6)了解极限的概念。理解数列极限、函数极限的概念、意义以及运算规则,掌握数列极限、函数极限的计算方法。掌握连续等基本概念。
4.算法初步
考试内容:
算法。基本算法语句。
考试要求:
(1)了解算法的含义。理解程序框图的三种基本逻辑结构:顺序、条件分支、循环,并能够写出解决具体问题的程序框图。
(2)理解几种基本算法语句,体会算法的基本思想。
5.排列组合与二项式定理
考试内容:
排列。组合。二项式定理。
考试要求:
(1)了解排列、组合、排列数、组合数等概念。
(2)理解分类计数原理和分步计数原理,掌握常见排列或组合问题的解决方法。
(3)掌握相异元素允许重复的排列与组合、不尽相异元素的排列与组合问题的解法。理解抽屉原理以及应用。
(4)掌握二项式定理以及二项展开式的性质以及应用。