2017年西藏高考数学基础练习(一)
来源 :中华考试网 2016-12-16
中一、选择题
1.(哈尔滨质检)设全集U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)},则下图中阴影部分表示的集合为( )
A.{x|x≥1} B.{x|1≤x<2}
C.{x|0
答案:B 命题立意:本题考查集合的概念、运算及韦恩图知识的综合应用,难度较小.
解题思路:分别化简两集合可得A={x|0
易错点拨:本题要注意集合B表示函数的定义域,阴影部分可视为集合A,B的交集在集合A下的补集,结合数轴解答,注意等号能否取到.
2.已知集合A={0,1},则满足条件AB={0,1,2,3}的集合B共有( )
A.1个 B.2个 C.3个 D.4个
答案:D 命题立意:本题考查集合间的运算、集合间的关系,难度较小.
解题思路:由题知B集合必须含有元素2,3,可以是{2,3},{0,2,3},{1,2,3},{0,1,2,3},共4个,故选D.
易错点拨:本题容易忽视集合本身{0,1,2,3}的情况,需要强化集合也是其本身的子集的意识.
3.设A,B是两个非空集合,定义运算A×B={x|xA∪B且xA∩B}.已知A={x|y=},B={y|y=2x,x>0},则A×B=( )
A.[0,1](2,+∞) B.[0,1)[2,+∞)
C.[0,1] D.[0,2]
答案:A 命题立意:本题属于创新型的集合问题,准确理解运算的新定义是解决问题的关键.对于此类新定义的集合问题,求解时要准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.
解题思路:由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以AB=[0,+∞),A∩B=(1,2],所以A×B=[0,1](2,+∞).
4.已知集合P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(RP)∩Q=( )
A.[2,3] B.(-∞,-1][3,+∞)
C.(2,3] D.(-∞,-1](3,+∞)
答案:C 解题思路:因为P={x|-1≤x≤2},Q={x|1
5.已知集合M={1,2,3,4,5},N=,则M∩N=( )
A.{4,5} B.{1,4,5}
C.{3,4,5} D.{1,3,4,5}
答案:C 命题立意:本题考查不等式的解法与交集的意义,难度中等.
解题思路:由≤1得≥0,x<1或x≥3,即N={x|x<1或x≥3},M∩N={3,4,5},故选C.
6.对于数集A,B,定义A+B={x|x=a+b,aA,bB},A÷B=.若集合A={1,2},则集合(A+A)÷A中所有元素之和为( )
A. B.
C. D.
答案:D 命题立意:本题考查考生接受新知识的能力与集合间的运算,难度中等.
解题思路:依题意得A+A={2,3,4},(A+A)÷A={2,3,4}÷{1,2}=,因此集合(A+A)÷A中所有元素的和等于1++2+3+4=,故选D.
7.已知集合A=kZsin(kπ-θ)=
,B=kZcos(kπ+θ)=cos θ,θ,则(ZA)∩B=( )
A.{k|k=2n,nZ} B.{k|k=2n-1,nZ}
C.{k|k=4n,nZ} D.{k|k=4n-1,nZ}
答案:A 命题立意:本题考查诱导公式及集合的运算,根据诱导公式对k的奇偶性进行讨论是解答本题的关键,难度较小.
解题思路:由诱导公式得A={kZ|k=2n+1,nZ},B={kZ|k=2n,nZ},故(ZA)∩B={kZ|k=2n,nZ},故选A.
8.已知M={x||x-1|>x-1},N={x|y=},则M∩N等于( )
A.{x|1
C.{x|1≤x≤2} D.{x|x<0}
答案:B 解题思路:(解法一)直接法:可解得M={x|x<1},N={x|0≤x≤2},所以M∩N={x|0≤x<1},故选B.
(解法二)排除法:把x=0代入不等式,可以得到0M,0N,则0M∩N,所以排除A,C,D.故选B.
9.(郑州一次质量预测)已知集合A={2,3},B={x|mx-6=0},若BA,则实数m=( )
A.3 B.2
C.2或3 D.0或2或3
答案:D 命题立意:本题考查了集合的运算及子集的概念,体现了分类讨论思想的灵活应用.
解题思路:当m=0时,B=A;当m≠0时,由B={2,3},可得=2或=3,解得m=3或m=2.综上可得,实数m=0或2或3,故选D.