2017年安全工程师考试《生产技术》考前辅导(10)
来源 :中华考试网 2016-12-27
中水路运输安全技术
一、水运运输安全基础知识
(一)水运交通事故的定义
水运交通事故的概念源于“海事”的概念。关于海事的定义有广义和狭义之分。广义上的海事泛指航海、造船、海上事故、海上运输等所有与海有关的事务;狭义上的海事意指“海上事故”或“海上意外事故”,如碰撞、搁浅、进水、沉没、倾覆、船体损坏、火灾、爆炸、主机损坏、货物损坏、船员伤亡、海洋污染等,都属于狭义的海事。
由于我国不但有广阔的海上水域,而且还包括广大的内陆水域,因此,将狭义上的海事概念拓展为水运交通事故,它既包括发生在海上的交通事故,也包括内陆水域的交通事故。由此可见,所谓水运交通事故,是指船舶、浮动设施在海洋、沿海水域和内河通航水域发生的交通事故。
(二)水运交通事故的等级
根据事故船舶的等级、人员伤亡和造成的直接经济损失情况,可将水运交通事故分为小事故、一般事故、大事故、重大事故、特大事故5个等级。
二、水运交通危险有害因素和隐患分析
水运交通事故有多种多样的形式,但每种事故的出现都是在一定条件因素制约下形成的。分析事故出现的规律和特性,探索事故的发生条件、潜在的险情因素,进而寻求酿成事故的原因,以作为今后防止海上事故的前车之鉴。
概括起来,水运交通事故的发生,与外界条件、技术(人一机控制)故障、不良的航行条件、导航失误等因素密切相关。
(一)外界条件
(1)视距降低。由于气象条件的影响,如雾、雨雪和夜间引起的视距降低,目测距离的受限,导致船舶发生事故的几率增大。
(2)气象恶劣给船舶带来不可抗拒的自然灾害。热带飓风、台风,中纬气旋和寒潮带来的强风、风浪,均给船舶海上航行造成不可抗拒的自然灾害。
(3)海上礁石、浅滩及水中障碍物必给船舶航行带来影响。如近年来在我国青岛中沙多次发生搁浅事故,但在加设了航标后,事故已大为减少。
(4)航路的自然条件和交通密度的影响。这主要指狭窄航道和交通密集水域,其航道宽度、弯曲度、深度、危险物的分布、航路标志的设置,船舶活动的密度和频度,船舶遭遇态势(对遇、横交和追越)和机率等因素,均增加了船舶导航的难度。船舶的碰撞事故与这些因素有着很重要的关系。
(5)海上灯塔、航路标志出故障、海上航行资料失效。这主要指海上灯塔、浮标、岸标等助航设施出故障,如电源中断及遭破坏等,均可导致船舶误航机率增大。
(6)外部因素引起船舶导航设备失效。
(二)技术(人一机控制)故障
(1)船舶的动力装置、电力系统技术故障。由于船体强度减弱或船体、机械有严重缺陷,造成船舶航行事故。
(2)操舵及螺旋桨遥控装置失控。由于船桥遥控的舵机和主机系统故障,使得船桥对车、舵的操纵失去控制,导致船舶事故发生。
(3)惰性气体系统故障。主要对油轮而言,在装卸原油或清洗油舱过程中,惰性气体系统对降低原油防爆上限温度及防止油料的爆炸起着重要作用。实践证明,90%以上的油轮爆炸事故是由于未装或因该系统出故障而发生的。
(4)导航设备故障。因导航设备本身性能不稳定,出现了技术故障,使其失去了导航性能(指向、定位和计程)应有的作用,使航线、船位的准确度和可靠性受到影响。
(5)通信设备故障。因船舶通信设备本身的性能不稳定,出现了技术故障,使船、岸或船与船之间的通信中断,彼此情况不能及时沟通,在港区或不良视距条件下,易造成船舶之间发生碰撞事故。
(三)不良的航行条件
(1)船桥人员配备不齐全、组织混乱。船上值班人员擅离职守,航海驾驶人员工作不认真不严肃,缺乏应有的工作责任心,无视安全航行规章。船长过分依赖引水员,对其错误行动未能及时纠正等等。这些不良的人为因素,均是出现海事的主观因素。
(2)人员理论知识和实践经验贫乏。船员航海知识浅薄,技术素质低劣以及海上经验不足,均是导致海损事故发生的因素。对多起海事原因的分析表明,约有2/3以上的海事是由人为因素造成的,说明船员条件是水运安全的直接重要因素。
(3)航海图、资料失效。航海图及资料是保证航行安全的基本工具之一。航海图资料的及时性和完整性是航行安全的起码保证。在使用过程中,未能及时按航行通告、警告修正海图和航海资料,使这些资料陈旧,降低了其实用价值,可给航行带来不可估量的损失。
(4)船桥指挥部位工作条件的影响。船桥指挥部位工作条件的优劣,可直接或间接地影响驾驶人员的操作。船桥视野的受限,影响了船上对外界的观察嘹望;内部通信的不畅通可阻碍航行指令及时下达;光线、通风的不充分,都可使船员疲劳和不适。
三、水运交通安全技术措施
(一)船舶航行定位与避碰
1.船舶导航与定位
1)航向。为了保证船舶航行安全,首先要确定船舶的航向与位置。实际航向有3种。首先是罗经航向,它是由罗经直接指示的船首方向。罗经航向经过罗经误差修正后得到正确的船首方向,称为真航向。由于风、流的影响,船舶运动的速度是船舶在静水中运动的速度与风流引起的速度的合速度,该合速度的方向是船舶重心轨迹的方向,称为航迹向。
测定船首方向的主要仪器罗经包括磁罗经、陀螺罗经。由于地磁场的南北极与地球的磁罗经南北极不一致,地磁场随地理位置而变化,磁罗经又受周围的铁磁性物质的影响,因此磁罗经的误差变化较大,使用时必须进行误差校正。陀螺罗经是利用绕定点转动的高速旋转陀螺仪的定轴性与进动性,借助于控制系统及阻尼系统使陀螺仪的轴自动指北,并能跟随地球自转,精确跟踪地理子午面的指北仪器。由于陀螺罗经安装时基线与船舶首尾线不一致会造成基线误差,此外由于陀螺罗经的结构以及船舶运动会引起纬度误差、速度误差、冲击误差与摇摆误差等。这些误差通过校正或补偿的方法,一般均可控制在较小的范围之内。
2)定位。定位方法按照参照目标可分为岸基定位与星基定位。
岸基定位是利用岸上目标定位,如灯标,山头以及导航系统中的信号发射台等都是岸基目标。最普通的岸基定位是用肉眼通过罗经测定灯标、山头等显著物标的方位,或通过六分仪测定目标的距离,然后得出几个目标的方位或距离的位置线,相交求出船位。雷达定位是通过雷达脉冲遇到显著物标反射回来所经过的时间及方向测定物标的距离和方位,得出位置线,相交而定出船位。有些导航系统,如劳兰C,它是利用到两个定点(信号与发射台)的距离差为定值的点的轨迹作为位置线,测定两发射台信号到船舶的传播时间差,而得出双曲线位置线。因而称其为双曲线导航系统。
星基定位是以星体为参照物测定船舶位置的方法。传统的星基定位方法是利用天体,包括太阳、月亮、恒星、行星与船舶的相对位置来确定船舶的位置,称为天文定位。
卫星导航系统是以人造地球卫星为参照目标的位置测定系统。目前使用最广泛的是美国从1973年开始研制到1993年投入使用的全球定位系统(Global Positioning System,GPS)。它包括24颗卫星,分布在6个轨道平面,卫星高度为20200km。它是利用已知空间位置的人造卫星发射的电磁波,测定其卫星到接收机天线的距离。若同时测量三颗卫星的距离,则可求得接收机的三维位置,经度、纬度和高度。若使用的全球定位系统同时测量四颗卫星的距离,除测定接收机的三维位置外,还可求得接收机的钟差。
为了提高GPS的定位精度,目前沿海地区使用最多的是差分GPS。它是用一台精确位置已知的GPS接收机作为基准接收机,测得所在地的各种误差,而附近的GPS用户接收机在接收含有各种误差的GPS信号的同时,还接收基准台发送的误差信息,经过修正后,得到精确的位置信息。当用户距基准台100km时,水平位置误差在5m以内。我国在“九五 ”期间建成沿海无线电指向标差分全球定位系统台链(RBN/DGPS)。
2.船舶操纵与避碰
控制船舶运动的设备是推进器(车)与舵。在海上航行时一般只用舵控制,当测得船舶位置偏离计划航线,或船首偏离设定航向时,要设法使船舶以最有效的方法回到计划航线与设定航向。控制航向的主要设备是舵,在港内或狭水道,对有双螺旋桨或侧推器的船舶,在用舵的同时也可用双桨配合或侧推器来控制船首向。在狭水道或港内一般由人工操舵;在海上一般采用自动操舵控制航向。自动操舵大致可分为两类:一类称为航向保持系统,另一类称为航迹保持系统。航向保持系统是根据船首向与设定航向的偏差,通过控制系统来控制舵角,使船首回到设定航向。根据控制系统的原理不同分为PID(比例一积分一微分)自动操舵,自适应自动操舵等。此外,新的自动操舵中还采用模糊控制,多模式控制等先进技术。航迹保持系统是根据定位信息测定航迹偏离程度,通过计算确定出最有效舵角与舵角执行时间,使船舶能最快、最省燃料的回到设定航线上来。
舵用于控制航向,螺旋桨用于推进与制动船舶。要控制船舶的航向、位置、速度、回转角速度等,必须掌握船舶的操纵特性。了解船舶在舵作用下的保向与改向能力,惯性停船冲程及螺旋桨逆转制动冲程等规律。这些规律一般用船舶操纵运动方程式来描述。
根据《国际海上避碰规则》避碰是指航行中各类水上运输工具相互间的避让。一般是通过航行值班人员的嘹望与仪器观测来判断是否有碰撞危险,然后用舵与车来避免本船与他船的碰撞,但至今尚没有一套实用的闭环的自动避碰系统。目前使用最广泛的雷达自动标绘仪(ARPA),是根据雷达的目标回波经过量化、滤波和跟踪处理后得出的目标运动轨迹,在雷达荧光屏显示目标的相对运动矢量或目标的预示危险区(PAD),向驾驶人员提供避碰信息,然后由驾驶人员采取避碰措施。但由于噪声干扰等引起的目标回波误差,本船航向误差,使滤波跟踪后得到的目标轨迹有误差,还会引起跟踪目标丢失或误跟踪。目标船的运动不是本船所能控制的,它有相当的随机性。由于这些原因,使得带ARPA的雷达也只能向驾驶人员提供避碰信息,而不能进行自动避碰。