2019年浙江省杭州市中考数学模拟试卷(word下载版)
来源 :中华考试网 2018-10-09
中2019年浙江省杭州市中考数学模拟试卷
一、选择题(共11小题,满分34分)
1.(3分)(2007•德阳)下列计算正确的是( )
A. a+a=a2 B. (3a)2=6a2 C. (a+1)2=a2+1 D. a•a=a2
2.(3分)2009年杭州市面向退休人员、特困户、残疾人和在校中小学生等67万人发放总额为1亿元的消费券,则这1亿元用科学记数法表示为( )
A. 1.0×108 B. 108 C. 10×107 D. 1.0×109
>>>在线下载2019年浙江省杭州市中考数学模拟试卷(word下载版)
3.(3分)(2013•合肥模拟)若a是2的相反数,|b|=3,在直角坐标系中,点M(a,b)的坐标为( )
A. (2,3)或(﹣2,3) B. (2,3)或(﹣2,﹣3)
C. (﹣2,3)或(﹣2,﹣3) D. (﹣2,3),(﹣2,﹣3),(2,3)或(2,﹣3)
4.(3分)(2006•绍兴)已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于( )
A. 15° B. 20° C. 25° D. 30°
5.(3分)(2008•黄冈)计算的结果为( )
A. B. C. D.
6.(3分)(2007•绍兴)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据有( )
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③同位角相等,两直线平行;
④内错角相等,两直线平行.
A. ①② B. ②③ C. ③④ D. ①④
7.(3分)(2012•赣州模拟)一个全透明的正方体上面嵌有一根黑色的金属丝,如图所示;那么金属丝在俯视图中的形状是( )
A. B. C. D.
8.(3分)(2008•东城区一模)如图,MN是圆柱底面的直径,MP是圆柱的高,在圆柱的侧面上,过点M,P有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿MP剪开,所得的侧面展开图可以是( )
A. B. C. D.
9.(3分)(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A. 12≤a≤13 B. 12≤a≤15 C. 5≤a≤12 D. 5≤a≤13
10.(3分)如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.
A. 1个 B. 2个 C. 3个 D. 4个
16.(4分)(2008•大庆)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为( )
A. 3 B. 4 C. 6 D. 7
二、填空题(共5小题,每小题4分,满分20分)
11.(4分)(2014•南充)分解因式:x3﹣6x2+9x= _________ .
12.(4分)(2005•河北)高温煅烧石灰石(CaCO3)可以抽取生石灰(CaO)和二氧化碳(CO2).如果不考虑杂质与损耗,生产生石灰14吨就需要煅烧石灰石25吨,那么生产生石灰224万吨,需要石灰石
_________ 万吨.
13.(4分)(2005•长沙)甲、乙两人进行射击比赛,在相同条件下各射击10次.他们的平均成绩均为7环,10次射击成绩的方差分别是:S甲2=3,S乙2=1.2.成绩较为稳定的是 _________ .
14.(4分)两圆有多种位置关系,图中存在的位置关系是 _________ .
15.(4分)(2007•柳州)如图所示,甲、乙、丙、丁四个长方形拼成正方形EFGH,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm2,四边形ABCD的面积是20cm2,则甲、乙、丙、丁四个长方形周长的总和为 _________ cm.
三、解答题(共8小题,满分66分)
17.(6分)有一底角为α的直角梯形(下底>上底),下底长为acm,与底垂直的腰长为acm,请用尺规作出此直角梯形.(不写作法,保留作图痕迹.)
18.(6分)(2011•同安区质检)如图,点A、B为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所成的角度约为67°,半径OC所在的直线与放置平面垂直,垂足为点E.DE=15cm,AD=14cm.求半径OA的长.(精确到0.1cm)
参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.
19.(8分)(2008•绵阳)青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元/天•间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?
20.(8分)(2008•茂名)不透明的口袋里装有3个球,这3个球分别标有数字1,2,3,这些球除了数字以外都相同.
(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?
(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.
21.(8分)(2008•漳州)为迎接绿色奥运,创建绿色家园,某环保小组随机调查了30个家庭一天丢弃塑料袋的情况,统计结果如下:
塑料袋个数 0 1 2 3 4 6
家庭个数 1 1 11 7 5 1
(1)这种调查方式属于普查还是抽样调查?答: _________ .
(2)这30个家庭一天丢弃塑料袋个数的众数是 _________ ,中位数是 _________ ;
(3)漳州市人口约456万,假设平均一个家庭有4个人.若根据30个家庭这一天丢弃塑料袋个数的平均数估算,则全市一天丢弃塑料袋总数约是多少个?(写出解答过程,结果用科学记数法表示)
(4)今年6月1日起,国务院颁布的《关于限制生产销售使用塑料购物袋的通知》开始施行.参考上述统计结果,请你提出一条合理建议: _________ .
22.(8分)(2008•泉州)如图,⊙O1、⊙O2、⊙O3、⊙O4的半径都为1,其中⊙O1和⊙O2外切,⊙O2、⊙O3,⊙O4两两外切,并且O1、O2、O3、三点在同一直线上.
(1)请直接写出O2O4的长;
(2)若⊙O1沿图中箭头所示的方向在⊙O2的圆周上滚动,最后⊙O1滚动到⊙O4的位置上,试求在上述滚动过程中圆心O1移动的距离.(精确到0.01)
23.(10分)(2008•大兴安岭)武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇.冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.
(1)请直接写出冲锋舟从A地到C地所用的时间.
(2)求水流的速度.
(3)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇.已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数关系式为y=﹣x+11,假设群众上下船的时间不计,求冲锋舟在距离A地多远处与救生艇第二次相遇?
24.(12分)(2007•重庆)已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴公式为x=﹣.