中考

导航

2018年定西市中考数学试题及答案(word版)

来源 :中华考试网 2018-09-06

定西市2018年初中毕业、高中招生考试数学试卷

  一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.

  1.-2018的相反数是( )

  A.-2018 B.2018 C. D.

>>>在线下载2018年定西市中考数学试题及答案(word版)

  2.下列计算结果等于的是( )

  A. B. C. D.

  3.若一个角为,则它的补角的度数为( )

  A. B. C. D.

  4.已知,下列变形错误的是( )

  A. B. C. D.

  5.若分式的值为0,则的值是( )

  A.2或-2 B.2 C.-2 D.0

  6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差如下表:

  甲 乙 丙 丁

  平均数(米) 11.1 11.1 10.9 10.9

  方差 1.1 1.2 1.3 1.4

  若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( )

  A.甲 B.乙 C.丙 D.丁

  7.关于的一元二次方程有两个实数根,则的取值范围是( )

  A. B. C. D.

  8.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置,若四边形的面积为25,,则的长为( )

  A.5 B. C.7 D.

  9.如图,过点,,,点是轴下方上的一点,连接,,则的度数是( )

  A. B. C. D.

  10.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是( )

  A.①②④ B.①②⑤ C.②③④ D.③④⑤

  二、填空题:本大题共8小题,每小题3分,共24分.

  11.计算: .

  12.使得代数式有意义的的取值范围是 .

  13.若正多边形的内角和是,则该正多边形的边数是 .

  14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .

  15.已知,,是的三边长,,满足,为奇数,则 .

  16.如图,一次函数与的图象相交于点,则关于的不等式组的解集为 .

  17.如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为,则勒洛三角形的周长为 .

  18.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为 .

  三、解答题(一):本大题共5小题,共26分.解答应写出文字说明、证明过程或演算步骤.

  19.计算:.

  20.如图,在中,.

  (1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)

  (2)判断(1)中与的位置关系,直接写出结果.

  21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.

  22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,,两地被大山阻隔,由地到地需要绕行地,若打通穿山隧道,建成,两地的直达高铁,可以缩短从地到地的路程.已知:,,公里,求隧道打通后与打通前相比,从地到地的路程将约缩短多少公里?(参考数据:,)

  23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.

  (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?

  (2)现将方格内空白的小正方形(,,,,,)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.

  四、解答题(二):本大题共5小题,共50分.解答应写出文字说明、证明过程或演算步骤.

  24.“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按,,,四个等级进行统计,制成了如下不完整的统计图.(说明:级:8分—10分,级:7分—7.9分,级:6分—6.9分,级:1分—5.9分)

  根据所给信息,解答以下问题:

  (1)在扇形统计图中,对应的扇形的圆心角是_______度;

  (2)补全条形统计图;

  (3)所抽取学生的足球运球测试成绩的中位数会落在_______等级;

  (4)该校九年级有300名学生,请估计足球运球测试成绩达到级的学生有多少人?

  25.如图,一次函数的图象与反比例函数(为常数且)的图象交于,两点,与轴交于点.

  (1)求此反比例函数的表达式;

  (2)若点在轴上,且,求点的坐标.

  26.已知矩形中,是边上的一个动点,点,,分别是,,的中点.

  (1)求证:;

  (2)设,当四边形是正方形时,求矩形的面积.

  27.如图,点是的边上一点,与边相切于点,与边,分别相交于点,,且.

  (1)求证:;

  (2)当,时,求的长.

  28.如图,已知二次函数的图象经过点,与轴分别交于点,点.点是直线上方的抛物线上一动点.

  (1)求二次函数的表达式;

  (2)连接,,并把沿轴翻折,得到四边形.若四边形为菱形,请求出此时点的坐标;

  (3)当点运动到什么位置时,四边形的面积最大?求出此时点的坐标和四边形的最大面积.

  定西市2018年初中毕业、高中招生考试数学试题参考答案

  一、选择题

  1-5: BDCBA 6-10: ACDBA

  二、填空题

  11. 0 12. 13. 8 14. 108

  15. 7 16. 17. 18. 1

  三、解答题

  19.解:原式=

  =﹒

  .

  20.解:(1)如图,作出角平分线CO;

  作出⊙O.

  (2)AC与⊙O相切.

  21.解:设合伙买鸡者有x人,鸡价为y文钱.

  根据题意可得方程组,

  解得 .

  答:合伙买鸡者有9人,鸡价为70文钱.

  22.解:如图,过点C作CD⊥AB, 垂足为D.

  在Rt△ADC和Rt△BCD中,

  ∵ ∠CAB=30°,∠CBA=45°,AC=640.

  ∴ CD=320,AD=,

  ∴ BD =CD=320,BC=,

  ∴ AC+BC=,

  ∴ AB=AD+BD=,

  ∴ 1088-864=224(公里).

  答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.

  23.解:(1)米粒落在阴影部分的概率为;

  (2)列表:

  第二次

  第一次 A B C D E F

  A (A,B) (A,C) (A,D) (A,E) (A,F)

  B (B , A) (B,C) (B,D) (B,E) (B,F)

  C (C , A) (C,B) (C,D) (C,E) (C,F)

  D (D , A) (D,B) (D,C) (D,E) (D,F)

  E (E , A) (E,B) (E,C) (E,D) (E,F)

  F (F , A) (F , B) (F , C) (F , D) (F,E)

  共有30种等可能的情况,其中图案是轴对称图形的有10种,

  故图案是轴对称图形的概率为;

  (注:画树状图或列表法正确均可得分)

  四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理,答案正确均可得分)

  24.(1)117;

  (2)如图

  (3)B;

  (4)

  25.解:(1)把点A(-1,a)代入,得,

  ∴ A(-1,3)

  把A(-1,3)代入反比例函数,得,

  ∴ 反比例函数的表达式为.

  (2)联立两个函数表达式得 ,解得 ,.

  ∴ 点B的坐标为B(-3,1).

  当时,得.

  ∴ 点C(-4,0).

  设点P的坐标为(,0).

  ∵ ,

  ∴ .

  即 ,

  解得 ,.

  ∴ 点P(-6,0)或(-2,0).

  26.解:(1)∵点F,H分别是BC,CE的中点,

  ∴FH∥BE,.

  ∴.

  又∵点G是BE的中点,

  ∴.

  又∵,

  ∴△BGF ≌ △FHC.

  (2)当四边形EGFH是正方形时,可知EF⊥GH且EF=GH,

  ∵在△BEC中,点G,H分别是BE,EC的中点,

  ∴ 且GH∥BC,

  ∴EF⊥BC.

  又∵AD∥BC, AB⊥BC,

  ∴,

  ∴.

  27.(1)证明:连接OE,BE.

  ∵ DE=EF,∴

分享到

您可能感兴趣的文章