2017年公务员考试《数量关系》练习题及答案解析十一
来源 :中华考试网 2017-02-02
中等差数列的变形四:
【1】7,11,16,10,3,11,( )
A.20
B.8
C.18
D.15
【答案】A选项
【解析】这也是最后一种典型的等差数列的变形,这是目前为止难度最大的一种变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是-6,第五个与第四个数字之间的差值是-7。第六个与第五个数字之间的差值是8,假设第七个与第六个数字之间的差值是X。
总结一下我们发现数值之间的差值分别为4,5,-6,-7,8,X。很明显数值之间的差值形成了一个新的等差数列,但各项之间每“相隔两项”的正负号是不同的,由此可以推出X=9,则第七个数为11+9=20。即答案为A选项。
规律二:等比数列及其变式
【2】4,8,16,32,( )
A.64
B.68
C.48
D.54
【答案】A选项
【解析】这是一个典型的等比数列,即“后面的数字”除以“前面数字”所得的值等于一个常数。是“前面数字”的2倍,观察得知第三个与第二个数字之间,第四和第三个数字之间,后项也是前项的2倍。那么在此基础上,我们对未知的一项进行推理,即32×2=64,第五项应该是64。
(一)等比数列的变形一:
【3】4,8,24,96,( )
A.480
B.168
C.48
D.120
【答案】A选项
【解析】这是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为4。假设第五个与第四个数字之间“后项”与“前项”的倍数为X。
我们发现“倍数”分别为2,3,4,X。很明显“倍数”之间形成了一个新的等差数列,由此可以推出X=5,则第五个数为96×5=480。即答案为A选项。
(二)等比数列的变形二:
【4】4,8,32,256,( )
A.4096
B.1024
C.480
D.512
【答案】A选项
【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为4;第四个与第三个数字之间“后项”与“前项”的倍数为8。假设第五个与第四个数字之间“后项”与“前项”的倍数为X。
我们发现“倍数”分别为2,4,8,X。很明显“倍数”之间形成了一个新的等比数列,由此可以推出X=16,则第五个数为256×16=4096。即答案为A选项。
(三)等比数列的变形三:
【5】2,6,54,1428,( )
A.118098
B.77112
C.2856
D.4284
【答案】A选项
【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为6,第一个数字为2,“后项”与“前项”的倍数为3,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为9;第四个与第三个数字之间“后项”与“前项”的倍数为27。假设第五个与第四个数字之间“后项”与“前项”的倍数为X
我们发现“倍数”分别为3,9,27,X。很明显“倍数”之间形成了一个新的平方数列,规律为3的一次方,3的二次方,3的三次方,则我们可以推出X为3的四次方即81,由此可以推出第五个数为1428×81=118098。即答案为A选项。
(四)等比数列的变形四:
【6】2,-4,-12,48,( )
A.240
B.-192
C.96
D.-240
【答案】A选项
【解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为-4,第一个数字为2,“后项”与“前项”的倍数为-2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为-4。假设第五个与第四个数字之间“后项”与“前项”的倍数为X
我们发现“倍数”分别为-2,3,-4,X。很明显“倍数”之间形成了一个新的等差数列,但他们之间的正负号是交叉错位的,由此李老师认为我们可以推出X=5,即第五个数为48×5=240,即答案为A选项。
规律三:求和相加式的数列
规律点拨:在国考中经常看到有“第一项与第二项相加等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列
【7】56,63,119,182,()
A.301
B.245
C.63
D.364
【答案】A选项
【解析】这也是一个典型的求和相加式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是56,第二项是63,两者相加等于第三项119。同理,第二项63与第三项119相加等于第182,则我们可以推敲第五项数字等于第三项119与第四项182相加的和,即第五项等于301,所以A选项正确。
规律四:求积相乘式的数列
规律点拨:在国考及地方公考中也经常看到有“第一项与第二项相乘等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列
【8】3,6,18,108,()
A.1944
B.648
C.648
D.198
【答案】A选项
【解析】这是一个典型的求积相乘式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是3,第二项是6,两者相乘等于第三项18。同理,第二项6与第三项18相乘等于第108,则我们可以推敲第五项数字等于第三项18与第四项108相乘的积,即第五项等于1944,所以A选项正确。
规律五:求商相除式数列
规律点拨:在国考及地方公考中也经常看到有“第一项除以第二项等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列
【9】800,40,20,2,()
A.10
B.2
C.1
D.4
【答案】A选项
【解析】这是一个典型的求商相除式的数列,即“第一项除以第二项等于第三项”,我们看题目中的第一项是800,第二项是40,第一项除以第二项等于第三项20。同理,第二项40除以第三项20等于第四项2,则我们可以推敲第五项数字等于第三项20除以第四项2,即第五项等于10,所以A选项正确。备考规律四:求积相乘式的数列
规律点拨:在国考及地方公考中也经常看到有“第一项与第二项相乘等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列
规律六:立方数数列及其变式
【10】8,27,64,( )
A.125
B.128
C.68
D.101
【答案】A选项
【广州新东方戴斌解析】这是一个典型的“立方数”的数列,即第一项是2的立方,第二项是3的立方,第三项是4的立方,同理我们推出第四项应是5的立方。所以A选项正确。