高考

导航

2017年高考数学提分专项练习(九)

来源 :中华考试网 2016-12-27

一、选择题

1.已知函数y=Asin(ωx+φ)+k的最大值为4,最小值为0,最小正周期为,直线x=是其图象的一条对称轴,则下面各式中符合条件的解析式为(  )

A.y=4sin   B.y=2sin+2

C.y=2sin+2 D.y=2sin+2

答案:D 解题思路:由题意:解得:又函数y=Asin(ωx+φ)+k最小正周期为,

ω==4, f(x)=2sin(4x+φ)+2.又直线x=是f(x)图象的一条对称轴,

4×+φ=kπ+, φ=kπ-,kZ,故可得y=2sin+2符合条件,所以选D.

2.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是(  )

A.[6k-1,6k+2](kZ) B.[6k-4,6k-1](kZ)

C.[3k-1,3k+2](kZ) D.[3k-4,3k-1](kZ)

答案:B 解题思路:|AB|=5,|yA-yB|=4,所以|xA-xB|=3,即=3,所以T==6,ω=.由f(x)=2sin过点(2,-2),即2sin=-2,0≤φ≤π,解得φ=.函数f(x)=2sin,由2kπ-≤x+≤2kπ+,解得6k-4≤x≤6k-1,故函数的单调递增区间为[6k-4,6k-1](kZ).

3.当x=时,函数f(x)=Asin(x+φ)(A>0)取得最小值,则函数y=f是(  )

A.奇函数且图象关于点对称

B.偶函数且图象关于点(π,0)对称

C.奇函数且图象关于直线x=对称

D.偶函数且图象关于点对称

答案:C 解题思路:由已知可得f=Asin+φ=-A, φ=-π+2kπ(kZ),

f(x)=Asin,

y=f=Asin(-x)=-Asin x,

函数是奇函数,关于直线x=对称.

4.将函数y=sin的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是(  )

A. B.

C. D.

答案:A 命题立意:本题考查了三角函数图象的平移及三角函数解析式的对应变换的求解问题,难度中等.

解题思路:将函数y=sin图象上各点的横坐标伸长到原来的3倍,得y=sin,再向右平移个单位,得y=sin=sin 2x,令2x=kπ,kZ可得x=kπ,kZ,即该函数的对称中心为,kZ,故应选A.

易错点拨:周期变换与平移变换过程中要注意变换的仅是x,防止出错.

5.已知函数f(x)=sin(xR,ω>0)的部分图象如图所示,点P是图象的最高点,Q是图象的最低点,且|PQ|=,则f(x)的最小正周期是(  )

A.6π    B.4π    C.4     D.6

答案:D 解题思路:由于函数f(x)=sin,则点P的纵坐标是1,Q的纵坐标是-1.又由|PQ|==,则xQ-xP=3,故f(x)的最小正周期是6.

6.设函数f(x)=sin x+cos x,把f(x)的图象按向量a=(m,0)(m>0)平移后的图象恰好为函数y=-f′(x)的图象,则m的最小值为(  )

A. B.

C. D.

答案:C 解题思路:f(x)=sin x+cos x=sinx+,y=-f′(x)=-(cos x-sin x)=sin, 将f(x)的图象按向量a=(m,0)(m>0)平移后得到y=sin的图象, sin=sin.故m=+2kπ,kN,故m的最小值为.

小编推荐:2017年全国高考备考(模拟试题)专题(全科)

分享到

您可能感兴趣的文章